Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Blood ; 143(6): 522-534, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37946299

RESUMEN

ABSTRACT: State-of-the-art response assessment of central nervous system lymphoma (CNSL) by magnetic resonance imaging is challenging and an insufficient predictor of treatment outcomes. Accordingly, the development of novel risk stratification strategies in CNSL is a high unmet medical need. We applied ultrasensitive circulating tumor DNA (ctDNA) sequencing to 146 plasma and cerebrospinal fluid (CSF) samples from 67 patients, aiming to develop an entirely noninvasive dynamic risk model considering clinical and molecular features of CNSL. Our ultrasensitive method allowed for the detection of CNSL-derived mutations in plasma ctDNA with high concordance to CSF and tumor tissue. Undetectable plasma ctDNA at baseline was associated with favorable outcomes. We tracked tumor-specific mutations in plasma-derived ctDNA over time and developed a novel CNSL biomarker based on this information: peripheral residual disease (PRD). Persistence of PRD after treatment was highly predictive of relapse. Integrating established baseline clinical risk factors with assessment of radiographic response and PRD during treatment resulted in the development and independent validation of a novel tool for risk stratification: molecular prognostic index for CNSL (MOP-C). MOP-C proved to be highly predictive of outcomes in patients with CNSL (failure-free survival hazard ratio per risk group of 6.60; 95% confidence interval, 3.12-13.97; P < .0001) and is publicly available at www.mop-c.com. Our results highlight the role of ctDNA sequencing in CNSL. MOP-C has the potential to improve the current standard of clinical risk stratification and radiographic response assessment in patients with CNSL, ultimately paving the way toward individualized treatment.


Asunto(s)
Neoplasias del Sistema Nervioso Central , ADN Tumoral Circulante , Linfoma no Hodgkin , Humanos , ADN Tumoral Circulante/genética , Recurrencia Local de Neoplasia , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/terapia , Pronóstico , Biomarcadores de Tumor/genética , Sistema Nervioso Central
2.
Am J Pathol ; 193(8): 1101-1115, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196929

RESUMEN

A hallmark of primary lymphoma of the central nervous system (CNS; PCNSL) is the strong CXCR4 expression of the tumor cells, the function of which is still unknown. In vitro treatment of BAL17CNS lymphoma cells by AMD3100, which inhibits CXCR4-CXCL12 interactions, resulted in the significantly differential expression of 273 genes encoding proteins involved in cell motility, cell-cell signaling and interaction, hematological system development and function, and immunologic disease. Among the genes down-regulated was the one encoding CD200, a regulator of CNS immunologic activity. These data directly translated into the in vivo situation; BAL17CNS CD200 expression was down-regulated by 89% (3% versus 28% CD200+ lymphoma cells) in AMD3100-treated versus untreated mice with BAL17CNS-induced PCNSL. Reduced lymphoma cell CD200 expression may contribute to the markedly increased microglial activation in AMD3100-treated mice. AMD3100 also maintained the structural integrity of blood-brain barrier tight junctions and the outer basal lamina of cerebral blood vessels. Subsequently, lymphoma cell invasion of the brain parenchyma was impaired, and maximal parenchymal tumor size was significantly reduced by 82% in the induction phase. Thus, AMD3100 qualified as a potentially attractive candidate to be included into the therapeutic concept of PCNSL. Beyond therapy, CXCR4-induced suppression of microglial activity is of general neuroimmunologic interest. This study identified CD200 expressed by the lymphoma cells as a novel mechanism of immune escape in PCNSL.


Asunto(s)
Linfoma , Receptores CXCR4 , Ratones , Animales , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Bencilaminas , Encéfalo/metabolismo
3.
CRISPR J ; 5(5): 726-739, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36260299

RESUMEN

The development of clustered regulatory interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR-Cas9)-mediated gene modification has opened an exciting avenue of targeting genes to study the pathogenesis of diseases and to develop novel therapeutic concepts. However, as the effector protein Cas9 is of bacterial origin, unwanted side effects due to a host immune response against Cas9 need to be considered. Here, we used the syngeneic model of BAL17CNS-induced primary lymphoma of the central nervous system (PCNSL, CNS) in BALB/c mice to address this issue. Surprisingly, stable expression of Cas9 in BAL17CNS (BAL17CNS/Cas9) cells rendered them unable to establish PCNSL on intracerebral transplantation. Instead, they induced a prominent intracerebral immune response mediated by CD8 T cells, which lysed BAL17CNS/Cas9 cells via perforin. In addition, B cells contributed to the immune response as evidenced by serum anti-Cas9 antibodies in BALB/c mice as early as day 8 after transplantation of BAL17CNS/Cas9 cells. In athymic BALB/cnu/nu mice, NK cells mounted a vigorous intracerebral immune response with perforin-mediated destruction of BAL17CNS/Cas9 cells. Thus, in the CNS, perforin produced by NK and CD8 T cells was identified as a mediator of cytotoxicity against BAL17CNS/Cas9 cells. These observations should be taken into account when considering therapeutic CRISPR-Cas9-mediated tumor cell manipulation for PCNSL.


Asunto(s)
Proteína 9 Asociada a CRISPR , Edición Génica , Animales , Ratones , Perforina/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Linfocitos T CD8-positivos , Sistema Nervioso Central
4.
Biomedicines ; 10(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35453608

RESUMEN

In December 2019, the first case of COVID-19 was reported and since then several groups have already published that the virus can be present in the testis. To study the influence of SARS-CoV-2 which cause a dysregulation of the androgen receptor (AR) level, thereby leading to fertility problems and inducing germ cell testicular changes in patients after the infection. Formalin-Fixed-Paraffin-Embedded (FFPE) testicular samples from patients who died with or as a result of COVID-19 (n = 32) with controls (n = 6), inflammatory changes (n = 9), seminoma with/without metastasis (n = 11) compared with healthy biopsy samples (n = 3) were analyzed and compared via qRT-PCR for the expression of miR-371a-3p. An immunohistochemical analysis (IHC) and ELISA were performed in order to highlight the miR-371a-3p targeting the AR. Serum samples of patients with mild or severe COVID-19 symptoms (n = 34) were analyzed for miR-371a-3p expression. In 70% of the analyzed postmortem testicular tissue samples, a significant upregulation of the miR-371a-3p was detected, and 75% of the samples showed a reduced spermatogenesis. In serum samples, the upregulation of the miR-371a-3p was also detectable. The upregulation of the miR-371a-3p is responsible for the downregulation of the AR in SARS-CoV-2-positive patients, resulting in decreased spermatogenesis. Since the dysregulation of the AR is associated with infertility, further studies have to confirm if the identified dysregulation is regressive after a declining infection.

5.
Neuro Oncol ; 24(8): 1331-1340, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34935978

RESUMEN

BACKGROUND: The BRAF V600E mutation is present in approximately 50% of patients with melanoma brain metastases and an important prerequisite for response to targeted therapies, particularly BRAF inhibitors. As heterogeneity in terms of BRAF mutation status may occur in melanoma patients, a wild-type extracranial primary tumor does not necessarily rule out a targetable mutation in brain metastases using BRAF inhibitors. We evaluated the potential of MRI radiomics for a noninvasive prediction of the intracranial BRAF mutation status. METHODS: Fifty-nine patients with melanoma brain metastases from two university brain tumor centers (group 1, 45 patients; group 2, 14 patients) underwent tumor resection with subsequent genetic analysis of the intracranial BRAF mutation status. Preoperative contrast-enhanced MRI was manually segmented and analyzed. Group 1 was used for model training and validation, group 2 for model testing. After radiomics feature extraction, a test-retest analysis was performed to identify robust features prior to feature selection. Finally, the best performing radiomics model was applied to the test data. Diagnostic performances were evaluated using receiver operating characteristic (ROC) analyses. RESULTS: Twenty-two of 45 patients (49%) in group 1, and 8 of 14 patients (57%) in group 2 had an intracranial BRAF V600E mutation. A linear support vector machine classifier using a six-parameter radiomics signature yielded an area under the ROC curve of 0.92 (sensitivity, 83%; specificity, 88%) in the test data. CONCLUSIONS: The developed radiomics classifier allows a noninvasive prediction of the intracranial BRAF V600E mutation status in patients with melanoma brain metastases with high diagnostic performance.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Humanos , Imagen por Resonancia Magnética , Melanoma/genética , Melanoma/patología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Estudios Retrospectivos
6.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34944954

RESUMEN

Primary lymphoma of the central nervous system (PCNSL, CNS) is a specific diffuse large B cell lymphoma (DLBCL) entity confined to the CNS. Key to its pathogenesis is a failure of B cell differentiation and a lack of appropriate control at differentiation stages before entrance and within the germinal center (GC). Self-/polyreactive B cells rescued from apoptosis by MYD88 and/or CD79B mutations accumulate a high load of somatic mutations in their rearranged immunoglobulin (IG) genes, with ongoing somatic hypermutation (SHM). Furthermore, the targeting of oncogenes by aberrant SHM (e.g., PIM1, PAX5, RHOH, MYC, BTG2, KLHL14, SUSD2), translocations of the IG and BCL6 genes, and genomic instability (e.g., gains of 18q21; losses of 9p21, 8q12, 6q21) occur in these cells in the course of their malignant transformation. Activated Toll-like receptor, B cell receptor (BCR), and NF-κB signaling pathways foster lymphoma cell proliferation. Hence, tumor cells are arrested in a late B cell differentiation stage, corresponding to late GC exit B cells, which are genetically related to IgM+ memory cells. Paradoxically, the GC reaction increases self-/polyreactivity, yielding increased tumor BCR reactivity for multiple CNS proteins, which likely contributes to CNS tropism of the lymphoma. The loss of MHC class I antigen expression supports tumor cell immune escape. Thus, specific and unique interactions of the tumor cells with resident CNS cells determine the hallmarks of PCNSL.

7.
Blood Cancer Discov ; 2(1): 70-91, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33447829

RESUMEN

Based on gene expression profiles, diffuse large B cell lymphoma (DLBCL) is sub-divided into germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. Two of the most common genomic aberrations in ABC-DLBCL are mutations in MYD88, as well as BCL2 copy number gains. Here, we employ immune phenotyping, RNA-Seq and whole exome sequencing to characterize a Myd88 and Bcl2-driven mouse model of ABC-DLBCL. We show that this model resembles features of human ABC-DLBCL. We further demonstrate an actionable dependence of our murine ABC-DLBCL model on BCL2. This BCL2 dependence was also detectable in human ABC-DLBCL cell lines. Moreover, human ABC-DLBCLs displayed increased PD-L1 expression, compared to GCB-DLBCL. In vivo experiments in our ABC-DLBCL model showed that combined venetoclax and RMP1-14 significantly increased the overall survival of lymphoma bearing animals, indicating that this combination may be a viable option for selected human ABC-DLBCL cases harboring MYD88 and BCL2 aberrations.


Asunto(s)
Linfoma de Células B Grandes Difuso , Factor 88 de Diferenciación Mieloide , Animales , Genes bcl-2 , Centro Germinal/metabolismo , Linfoma de Células B Grandes Difuso/genética , Ratones , Factor 88 de Diferenciación Mieloide/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética
8.
Haematologica ; 106(3): 708-717, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32193251

RESUMEN

The immunoglobulin (Ig) heavy and light chain variable gene mutational pattern of the B cell receptor (BCR) in primary central nervous system (CNS) lymphoma (PCNSL) cells suggests antigenic selection to drive pathogenesis and confinement to the CNS. This hypothesis is supported by the observation that the tumor B cell receptor (tBCR) of PCNSL is polyreactive and may be stimulated by CNS proteins. To obtain further insight into the role of the germinal center (GC) reaction on BCR reactivity, we constructed recombinant antibodies (recAb) with Ig heavy and light chain sequences of the corresponding naive BCR (nBCR) by reverting tBCR somatic mutations in 10 PCNSL. Analysis of nBCR-derived recAb reactivity by a protein microarray and immunoprecipitation demonstrated auto- and polyreactivity in all cases. Self-/polyreactivity was not lost during the GC reaction; surprisingly, tBCR significantly increased self-/polyreactivity. In addition to proteins recognized by both the nBCR and tBCR, tBCR gained self-/polyreactivity particularly for proteins expressed in the CNS including proteins of oligodendrocytes/myelin, the S100 protein family, and splicing factors. Thus, in PCNSL pathogenesis, a faulty GC reaction may increase self-/polyreactivity, hereby facilitating BCR signaling via multiple CNS antigens, and may ultimately foster tumor cell survival in the CNS.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Cadenas Pesadas de Inmunoglobulina , Sistema Nervioso Central , Neoplasias del Sistema Nervioso Central/genética , Centro Germinal , Humanos , Receptores de Antígenos de Linfocitos B/genética
9.
J Mol Diagn ; 22(10): 1300-1307, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745612

RESUMEN

In newly diagnosed systemic diffuse large B-cell lymphoma, next-generation sequencing of plasma-derived cell-free DNA (cfDNA) detects somatic mutations as accurate as genotyping of the tumor biopsy. A distinct diffuse large B-cell lymphoma entity confined to the central nervous system is primary central nervous system lymphoma (PCNSL), which requires intracerebral biopsy and neuropathologic analysis to establish the diagnosis. So far, a biomarker for diagnosis and follow-up of PCNSL that can be investigated in blood has not been identified. This article addresses the question whether somatic mutations of the CD79B and MYD88 driver genes of PCNSL can be detected in cfDNA at disease diagnosis. Stereotactic biopsies and cfDNA of 27 PCNSL patients were analyzed for CD79B and MYD88 mutations. As control, cfDNA derived from six healthy volunteers was used. CD79B and MYD88 hot spot mutations were identified in 16 of 27 (59%) and 23 of 27 (85%) PCNSL biopsies, respectively, but only in 0 of 27 (0%) and 1 of 27 (4%) corresponding cfDNA samples, respectively. In cfDNA of one of four patients with Waldenstrom disease, as a further control, the MYD88 L265P mutation was readily detected, despite complete clinical remission. These data suggest that in PCNSL even if they carry such mutations, alterations of CD79B and MYD88 cannot be reliably detected in blood-derived cfDNA obtained before intracerebral biopsy.


Asunto(s)
Encéfalo/patología , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Neoplasias del Sistema Nervioso Central/sangre , Neoplasias del Sistema Nervioso Central/genética , Linfoma/sangre , Linfoma/genética , Mutación/genética , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Antígenos CD79/genética , Femenino , Frecuencia de los Genes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Factor 88 de Diferenciación Mieloide/genética
10.
Dis Markers ; 2019: 9803498, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885747

RESUMEN

Vimentin is a structural protein predominantly located in the head of sperms. The function and localization of the previously identified truncated version, Vimentin 3 (Vim3), are still unknown. To investigate whether the expression of Vim3 can be used as a reliable marker for the differentiation of sperm quality, we analyzed ejaculates from patients with oligoasthenoteratozoospermia (OAT) syndrome and normozoospermia. We identified sperms with head, neck, and tail changes, which were less positive for Vim3 in OAT syndrome compared to normozoospermia. The expression of Vim3 was significantly downregulated in patients with OAT syndrome compared to sperms from patients with normozoospermia (∗∗ p < 0.01). The ELISA analysis showed similar results as ejaculates from normozoospermic patients showed a significantly higher Vim3 concentration than patients with OAT syndrome (∗∗∗ p < 0.001). This study demonstrates that Vim3 is more highly expressed in ejaculates from patients with normozoospermia compared to ejaculates from patients with OAT syndrome. Therefore, we postulate that Vim3 can be used to determine ejaculate quality. Furthermore, we identified the marker, Vim3, to differentiate between mature sperms with no morphological changes and sperms with head, neck, and tail changes. A lateral flow assay that allows quick analysis is currently under development.


Asunto(s)
Regulación hacia Abajo , Oligospermia/diagnóstico , Espermatozoides/metabolismo , Vimentina/metabolismo , Adulto , Empalme Alternativo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Humanos , Masculino , Oligospermia/genética , Oligospermia/metabolismo , Semen/metabolismo , Vimentina/genética , Adulto Joven
11.
Eur J Immunol ; 49(3): 413-427, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30666625

RESUMEN

Increasing evidence suggests a role of CD8 T cells in autoimmune demyelinating CNS disease, which, however, is still controversially discussed. Mice, which express ovalbumin (OVA) as cytosolic self-antigen in oligodendrocytes (ODC-OVA mice), respond to CNS infection induced by OVA-expressing attenuated Listeria with CD8 T cell-mediated inflammatory demyelination. This model is suitable to decipher the contribution of CD8 T cells and the pathogen in autoimmune CNS disease. Here, we show that both antigen and pathogen are required in the CNS for disease induction, though not in a physically linked fashion. Intracerebral challenge with combined toll like receptor (TLR) TLR2 and TLR9 as well as TLR7 and TLR9 agonists substituted for the bacterial stimulus, but not with individual TLR agonists (TLR2, TLR3,TLR5,TLR7, TLR9). Furthermore, MyD88 inactivation rendered ODC-OVA mice resistant to disease induction. Collectively, CD8 T cell-mediated destruction of oligodendrocytes is activated if (i) an antigen shared with an infectious agent is provided in the CNS microenvironment and (ii) innate immune signals inform the CNS microenvironment that pathogen removal warrants an immune attack by CD8 T cells, even at the expense of locally restricted demyelination.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Oligodendroglía/inmunología , Ovalbúmina/inmunología , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología , Animales , Antígenos/genética , Antígenos/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/microbiología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/microbiología , Sistema Nervioso Central/patología , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/microbiología , Listeria monocytogenes/inmunología , Listeria monocytogenes/fisiología , Listeriosis/inmunología , Listeriosis/microbiología , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Ovalbúmina/genética , Ovalbúmina/metabolismo , Receptores Toll-Like/metabolismo
12.
Genes Chromosomes Cancer ; 58(1): 66-69, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30284345

RESUMEN

Primary lymphomas of the central nervous system (PCNSL) are diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). We here performed array-based DNA methylation analyses of 26 PCNSL and 78 DLBCL and validated our findings in an independent dataset. We identified 2847 CpGs differentially methylated between PCNSL and non-CNS-DLBCL. Neither a supervised analysis using these CpGs nor application of 3 CpG classifiers selected for class separation unambiguously separated PCNSL from non-CNS-DLBCL. Remarkably, 6/78 non-CNS-DLBCL consistently segregated with PCNSL, which displayed molecular features typical for PCNSL. Our findings suggest that a subset of non-CNS-DLBCL exists which molecularly resembles PCNSL.


Asunto(s)
Neoplasias del Sistema Nervioso Central/diagnóstico , Metilación de ADN/genética , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma/diagnóstico , Adulto , Anciano , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Diagnóstico Diferencial , Femenino , Humanos , Linfocitos , Linfoma/genética , Linfoma/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Masculino , Persona de Mediana Edad
13.
Am J Pathol ; 189(3): 540-551, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30593823

RESUMEN

Inflammatory bowel diseases frequently cause gastrointestinal dysmotility, suggesting that they may also affect the enteric nervous system. So far, the precise mechanisms that lead to gastrointestinal dysmotility in inflammatory bowel diseases have not been elucidated. To determine the effect of CD8 T cells on gastrointestinal motility, transgenic mice expressing ovalbumin on enteric neurons were generated. In these mice, adoptive transfer of ovalbumin-specific OT-I CD8 T cells induced severe enteric ganglionitis. CD8 T cells homed to submucosal and myenteric plexus neurons, 60% of which were lost, clinically resulting in severely impaired gastrointestinal transition. Anti-interferon-γ treatment rescued neurons by preventing their up-regulation of major histocompatibility complex class I antigen, thus preserving gut motility. These preclinical murine data translated well into human gastrointestinal dysmotility. In a series of 30 colonic biopsy specimens from patients with gastrointestinal dysmotility, CD8 T cell-mediated ganglionitis was detected that was followed by severe loss of enteric neurons (74.8%). Together, the preclinical and clinical data support the concept that autoimmune CD8 T cells play an important pathogenetic role in gastrointestinal dysmotility and may destroy enteric neurons.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos T CD8-positivos/inmunología , Motilidad Gastrointestinal/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Plexo Mientérico/inmunología , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Linfocitos T CD8-positivos/patología , Motilidad Gastrointestinal/genética , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Ratones , Ratones Transgénicos , Plexo Mientérico/patología
14.
Oncotarget ; 9(67): 32855-32867, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30214689

RESUMEN

Here, we present a miR mechanism which is active in the nucleus and is essential for the production of intron included, C-terminal truncated and biologically active proteins, like e.g. Vim3. We exemplified this mechanism by miRs, miR-15a and miR-498, which are overexpressed in clear cell renal carcinoma or oncocytoma. Both miRs directly interact with DNA in an intronic region, leading to transcriptional stop, and therefore repress the full length version of the pre-mRNA, resulting in intron included truncated proteins (Mxi-2 and Vim3). A computational survey shows that this miR:DNA interactions mechanism may be generally involved in regulating the human transcriptome, with putative interaction sites in intronic regions for over 1000 genes. In this work, an entirely new mechanism is revealed how miRs can repress full length protein translation, resulting in C-terminal truncated proteins.

15.
Nat Commun ; 8(1): 153, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28751718

RESUMEN

Chronic lymphocytic leukemia (CLL) remains an incurable disease. Two recurrent cytogenetic aberrations, namely del(17p), affecting TP53, and del(11q), affecting ATM, are associated with resistance against genotoxic chemotherapy (del17p) and poor outcome (del11q and del17p). Both del(17p) and del(11q) are also associated with inferior outcome to the novel targeted agents, such as the BTK inhibitor ibrutinib. Thus, even in the era of targeted therapies, CLL with alterations in the ATM/p53 pathway remains a clinical challenge. Here we generated two mouse models of Atm- and Trp53-deficient CLL. These animals display a significantly earlier disease onset and reduced overall survival, compared to controls. We employed these models in conjunction with transcriptome analyses following cyclophosphamide treatment to reveal that Atm deficiency is associated with an exquisite and genotype-specific sensitivity against PARP inhibition. Thus, we generate two aggressive CLL models and provide a preclinical rational for the use of PARP inhibitors in ATM-affected human CLL.ATM and TP53 mutations are associated with poor prognosis in chronic lymphocytic leukaemia (CLL). Here the authors generate mouse models of Tp53- and Atm-defective CLL mimicking the high-risk form of human disease and show that Atm-deficient CLL is sensitive to PARP1 inhibition.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Modelos Animales de Enfermedad , Leucemia Linfocítica Crónica de Células B/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Deleción Cromosómica , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 17/genética , Ciclofosfamida/farmacología , Perfilación de la Expresión Génica/métodos , Humanos , Immunoblotting , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Análisis de Supervivencia , Proteína p53 Supresora de Tumor/genética
16.
Oncotarget ; 8(66): 110118-110132, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29299134

RESUMEN

Primary central nervous system lymphomas (PCNSLs) are mature B-cell lymphomas confined to the central nervous system (CNS). Blood-brain barrier (BBB) dysfunction drastically alters the cerebrospinal fluid (CSF) proteome in PCNSL patients. To reveal the interaction of PCNSL tumors with CNS structures and the vasculature, we conducted a whole-proteome analysis of CSF from PCNSL patients (n = 17 at initial diagnosis) and tumor-free controls (n = 10) using label-free quantitative mass spectrometry. We identified 601 proteins in the CSF proteome using a one-step approach without further prefractionation, and quantified 438 proteins in detail using the Hi-N method. An immunoassay revealed that 70% of the patients in our unselected PCNSL patient cohort had BBB dysfunction. Correlation analysis indicated that 127 (30%) of the quantified proteins were likely increased in PCSNL patients due to BBB dysfunction. After the exclusion of these proteins, 66 were found to differ in abundance (fold-change > 2.0, p < 0.05) between PCNSL and control CSF proteomes, and most of those were associated with the CNS. These data also provide the first evidence that proteomic changes in CSF from PCNSL patients are mainly associated with protein ectodomain shedding, and that shedding of human leukocyte antigen class 2 proteins is a mechanism of tumor-cell immune evasion.

17.
J Neuropathol Exp Neurol ; 75(6): 499-502, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27142645

RESUMEN

Primary central nervous system (CNS) lymphoma (PCNSL) is a mature lymphoma of the diffuse large B-cell lymphoma (DLBCL) type confined to the CNS. Despite cytomorphological similarities between PCNSL and systemic DLBCL, molecular differences between both entities have been identified. The exclusively topographical restriction of PCNSL to the CNS is an unexplained mystery. To address the question of whether the unique lymphatic drainage system of the CNS, which differs from that of other organs, may play a role for this peculiar behavior, we investigated a series of 20 PCNSLs for the presence of lymphatic vessels by immunohistochemistry for Lyve-1, podoplanin, and Prox-1 expression. All PCNSLs lacked lymphatic vessels and, in this regard, were similar to 20 glioblastoma multiforme samples. In contrast to these tumors, all of which were located in the deep brain parenchyma, dural and meningeal DLBCL harbored lymphatic vessels that expressed Lyve-1 (3/8 tumors), podoplanin (5/8 tumors), and Prox-1 (5/8 tumors) in areas where the tumors had invaded the fibrous tissue of the dura. These data indicate that local topographical characteristics of the specific lymphatic drainage system may contribute to confinement of the tumor cells in PCNSL and malignant gliomas.


Asunto(s)
Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
Blood ; 127(22): 2732-41, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27048211

RESUMEN

The adaptor protein MYD88 is critical for relaying activation of Toll-like receptor signaling to NF-κB activation. MYD88 mutations, particularly the p.L265P mutation, have been described in numerous distinct B-cell malignancies, including diffuse large B-cell lymphoma (DLBCL). Twenty-nine percent of activated B-cell-type DLBCL (ABC-DLBCL), which is characterized by constitutive activation of the NF-κB pathway, carry the p.L265P mutation. In addition, ABC-DLBCL frequently displays focal copy number gains affecting BCL2 Here, we generated a novel mouse model in which Cre-mediated recombination, specifically in B cells, leads to the conditional expression of Myd88(p.L252P) (the orthologous position of the human MYD88(p.L265P) mutation) from the endogenous locus. These mice develop a lymphoproliferative disease and occasional transformation into clonal lymphomas. The clonal disease displays the morphologic and immunophenotypical characteristics of ABC-DLBCL. Lymphomagenesis can be accelerated by crossing in a further novel allele, which mediates conditional overexpression of BCL2 Cross-validation experiments in human DLBCL samples revealed that both MYD88 and CD79B mutations are substantially enriched in ABC-DLBCL compared with germinal center B-cell DLBCL. Furthermore, analyses of human DLBCL genome sequencing data confirmed that BCL2 amplifications frequently co-occurred with MYD88 mutations, further validating our approach. Finally, in silico experiments revealed that MYD88-mutant ABC-DLBCL cells in particular display an actionable addiction to BCL2. Altogether, we generated a novel autochthonous mouse model of ABC-DLBCL that could be used as a preclinical platform for the development and validation of novel therapeutic approaches for the treatment of ABC-DLBCL.


Asunto(s)
Linfocitos B/metabolismo , Transformación Celular Neoplásica/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , Mutación Missense , Factor 88 de Diferenciación Mieloide/biosíntesis , Neoplasias Experimentales/metabolismo , Animales , Linfocitos B/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Ratones , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/genética
20.
J Immunol ; 195(3): 1312-9, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116512

RESUMEN

Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity. Interestingly, proteins (GRINL1A, centaurin-α, BAIAP2) recognized by the recAbs are physiologically expressed by CNS neurons. Furthermore, 87% (20/23) of the recAbs, including all Abs derived from IGHV4-34 using PCNSL, recognized galectin-3, which was upregulated on microglia/macrophages, astrocytes, and cerebral endothelial cells upon CNS invasion by PCNSL. Thus, PCNSL Ig may recognize CNS proteins as self-Ags. Their interaction may contribute to BCR signaling with sustained NF-κB activation and, ultimately, may foster tumor cell proliferation and survival. These data may also explain, at least in part, the affinity of PCNSL cells for the CNS.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Neoplasias del Sistema Nervioso Central/inmunología , Linfoma de Células B/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Astrocitos/inmunología , Secuencia de Bases , Proteínas Sanguíneas , Carcinoma de Células Grandes/inmunología , Proliferación Celular , Células Endoteliales/inmunología , Activación Enzimática , Femenino , Galectina 3/inmunología , Galectinas , Perfilación de la Expresión Génica , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Macrófagos/inmunología , Masculino , Microglía/inmunología , Persona de Mediana Edad , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/inmunología , ARN Polimerasa II/inmunología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...